Molecular genetics of sporulation in Bacillus subtilis

Annu Rev Genet. 1996;30:297-41. doi: 10.1146/annurev.genet.30.1.297.


The process of sporulation in the bacterium Bacillus subtilis proceeds through a well-defined series of morphological stages that involve the conversion of a growing cell into a two-cell-chamber sporangium within which a spore is produced. Over 125 genes are involved in this process, the transcription of which is temporally and spatially controlled by four DNA-binding proteins and five RNA polymerase sigma factors. Through a combination of genetic, biochemical, and cell biological approaches, regulatory networks have been elucidated that explicitly link the activation of these sigma factors to landmark events in the course of morphogenesis and to each other through pathways of intercellular communication. Signals targeting proteins to specific subcellular localizations and governing the assembly of macromolecular structures have been uncovered but their nature remains to be determined.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Bacillus subtilis / genetics*
  • Bacillus subtilis / physiology
  • Genes, Bacterial
  • Spores, Bacterial / genetics*