Developmental asymmetries in experimental animals

Neurosci Biobehav Rev. 1996 Winter;20(4):645-9. doi: 10.1016/0149-7634(95)00078-x.

Abstract

The early embryo orients to the antero-posterior axis and differentiates along this, and the dorso-ventral and lateral axes. From Drosophila melanogaster, detailed knowledge has accrued of how segmentation and dorso-ventral differentiation proceed, and of their genic control, mostly by selector and homeobox (Hox) genes. The study of the control of lateral differentiation, instead, has been largely neglected. Yet handed asymmetry (the "obvious" asymmetries of, for example, heart, lung, anatomical features of the nervous system, etc.) is basic and, possibly, universal. In the mouse, two genes control this: the iv gene which, when mutated, leads to random, in the place of biased, asymmetry and so to random situs inversus viscerum: and the inv mutation which, by contrast, results in 100% situs inversus. Both mutants act as autosomal recessives. Human situs inversus is heterogeneous and may be akin to that produced by the murine iv gene. In spite of situs inversus, there is no shift of hand preference; but there is no information on other lateralization, e.g. of language or of dermatoglyphic patterns. Handed asymmetry is known in Drosophila, but there is no information on its control. In the experimental nematode, Caenorhabditis elegans, asymmetry arises when differently programmed cells arrange themselves to the two body sides, and is present already at the six-cell stage; and even the major sensory neurons chains along the body axis are distributed unequally on the two sides of the worm. Experimentally, by embryonic micro-manipulation or the use of chemical mutagens, the normal and invariate direction of handed asymmetry can be reversed.

Publication types

  • Review

MeSH terms

  • Animals
  • Embryonic and Fetal Development*
  • Functional Laterality / physiology*
  • Mice