Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Dec 1;6(12):1653-63.
doi: 10.1016/s0960-9822(02)70789-6.

Mutations That Suppress the Thermosensitivity of Green Fluorescent Protein


Mutations That Suppress the Thermosensitivity of Green Fluorescent Protein

K R Siemering et al. Curr Biol. .


Background: The green fluorescent protein (GFP) of the jellyfish Aequorea victoria has recently attracted great interest as the first example of a cloned reporter protein that is intrinsically fluorescent. Although successful in some organisms, heterologous expression of GFP has not always been straight forward. In particular, expression of GFP in cells that require incubation temperatures around 37 degrees C has been problematic.

Results: We have carried out a screen for mutant forms of GFP that fluoresce more intensely than the wild-type protein when expressed in E. coli at 37 degrees C. We have characterized a bright mutant (GFPA) with reduced sensitivity to temperature in both bacteria and yeast, and have shown that the amino acids substituted in GFPA act by preventing temperature-dependent misfolding of the GFP apoprotein. We have shown that the excitation and emission spectra of GFPA can be manipulated by site-directed mutagenesis without disturbing its improved folding characteristics, and have produced a thermostable folding mutant (GFP5) that can be efficiently excited using either long-wavelength ultraviolet or blue light. Expression of GFP5 results in greatly improved levels of fluorescence in both microbial and mammalian cells cultured at 37 degrees C.

Conclusions: The thermotolerant mutants of GFP greatly improve the sensitivity of the protein as a visible reporter molecule in bacterial, yeast and mammalian cells. The fluorescence spectra of these mutants can be manipulated by further mutagenesis without deleteriously affecting their improved folding characteristics, so it may be possible to engineer a range of spectral variants with improved tolerance to temperature. Such a range of sensitive reporter proteins will greatly improve the prospects for GFP-based applications in cells that require relatively high incubation temperatures.

Similar articles

See all similar articles

Cited by 124 articles

See all "Cited by" articles

Publication types

MeSH terms

Associated data

LinkOut - more resources