The antibodies of known three-dimensional structure exhibit a definite number of conformations (canonical structures) for five of six hypervariable loops. In the present study it was found that approximately 85% of the immunoglobulin sequences analyzed fall into a small number of canonical structure combinations, representing only 3% of the total possible. These structures were classified into six distinct groups, depending on the type of antigen with which they interact. Within each loop, the positions responsible for maintaining these canonical structures show a use frequency of amino acids that fits an inverse power law, whereas the use frequency of the amino acids responsible for the detailed antigenic specificity follows an exponential distribution. We propose an evolutionary interpretation that connects these data, using the fact that the inverse power law is generated by statistical processes of the type that yield a wealth curve and the fact that exponential distribution is generated by processes that are not biased by past history.