Hyperpolarization-activated Ca2+-permeable channels in the plasma membrane of tomato cells

J Membr Biol. 1997 Jan 1;155(1):35-45. doi: 10.1007/s002329900156.

Abstract

The hyperpolarization of the electrical plasma membrane potential difference has been identified as an early response of plant cells to various signals including fungal elicitors. The hyperpolarization-activated influx of Ca2+ into tomato cells was examined by the application of conventional patch clamp techniques. In both whole cell and single-channel recordings, clamped membrane voltages more negative than -120 mV resulted in time- and voltage-dependent current activation. Single-channel currents saturated with increasing activities of Ca2+ and Ba2+ from 3 to 26 mm and the single channel conductance increased from 4 pS to 11 pS in the presence of 20 mm Ca2+ or Ba2+, respectively. These channels were 20-25 and 10-13 times more permeable to Ca2+ than to K+ and to Cl-, respectively. Channel currents were strongly inhibited by 10 microM lanthanum and 50% inhibited by 100 microM nifedipine. This evidence suggests that hyperpolarization-activated Ca2+-permeable channels provide a mechanism for the influx of Ca2+ into tomato cells.

MeSH terms

  • Barium / metabolism
  • Calcium / metabolism
  • Calcium Channel Blockers / pharmacology
  • Calcium Channels / physiology*
  • Cell Membrane / physiology
  • Lanthanum / pharmacology
  • Lycopersicon esculentum / physiology*
  • Membrane Potentials
  • Patch-Clamp Techniques
  • Protoplasts / physiology*
  • Signal Transduction

Substances

  • Calcium Channel Blockers
  • Calcium Channels
  • Barium
  • Lanthanum
  • Calcium