Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model

J Neurosurg. 1997 Feb;86(2):272-8. doi: 10.3171/jns.1997.86.2.0272.


Recently, the authors showed that thrombin contributes to the formation of brain edema following intracerebral hemorrhage. The current study examines whether the action of thrombin is due to an effect on cerebral blood flow (CBF), vasoreactivity, blood-brain barrier (BBB) function, or cell viability. In vivo solutions of thrombin were infused stereotactically into the right basal ganglia of rats. The animals were sacrificed 24 hours later; CBF and BBB permeability were measured. The actions of thrombin on vasoreactivity were examined in vitro by superfusing thrombin on cortical brain slices while monitoring microvessel diameter with videomicroscopy. In separate experiments C6 glioma cells were exposed to various concentrations of thrombin, and lactate dehydrogenase release, a marker of cell death, was measured. The results indicate that thrombin induces BBB disruption as well as death of parenchymal cells, whereas CBF and vasoreactivity are not altered. The authors conclude that cell toxicity and BBB disruption by thrombin are triggering mechanisms for the edema formation that follows intracerebral hemorrhage.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood-Brain Barrier / drug effects
  • Blood-Brain Barrier / physiology
  • Brain Edema / etiology*
  • Brain Edema / physiopathology
  • Cell Death / physiology
  • Cell Membrane Permeability
  • Cells, Cultured / drug effects
  • Cerebral Hemorrhage / complications*
  • Cerebral Hemorrhage / physiopathology
  • Cerebrovascular Circulation / drug effects
  • Cerebrovascular Circulation / physiology
  • Endothelin-1 / pharmacology
  • In Vitro Techniques
  • L-Lactate Dehydrogenase / drug effects
  • Male
  • Rats
  • Rats, Sprague-Dawley
  • Thrombin / pharmacology
  • Thrombin / physiology*
  • Thrombin / toxicity
  • Vasoconstriction / drug effects


  • Endothelin-1
  • L-Lactate Dehydrogenase
  • Thrombin