Implications of intermediate filament protein phosphorylation

Cancer Metastasis Rev. 1996 Dec;15(4):429-44. doi: 10.1007/BF00054011.


Intermediate filament (IF) proteins, a large family of tissue specific proteins, undergo several posttranslational modifications, with phosphorylation being the most studied modification. IF protein phosphorylation is highly dynamic and involves the head and/or tail domains of these proteins, which are the domains that impart most of the structural heterogeneity and hence presumed tissue specific functions. Although the function of IF proteins remains poorly understood, several regulatory roles for IF protein phosphorylation have been identified or are emerging. Those roles include filament disassembly and reorganization, solubility, localization within specific cellular domains, association with other cytoplasmic or membrane associated proteins, protection against physiologic stress and mediation of tissue-specific functions. Understanding the mechanistic and functional aspects of IF protein phosphorylation is providing insights not only regarding the function of this modification, but also regarding the function of IF proteins.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Humans
  • Intermediate Filament Proteins / metabolism*
  • Phosphorylation


  • Intermediate Filament Proteins