Improvement in bovine embryo production in vitro by glutathione-containing culture media

Mol Reprod Dev. 1996 Apr;43(4):437-43. doi: 10.1002/(SICI)1098-2795(199604)43:4<437::AID-MRD5>3.0.CO;2-Q.

Abstract

Bovine oocytes were matured, fertilized, and cultured (TCM 199 with serum and co-culture) in vitro (IVMFC) with addition, during different phases of the procedure, of antioxidants: superoxide dismutase (SOD) and reduced glutathione (GSH). The addition of SOD (1,500 or 3,000 IU/ml) did not improve proportions of oocytes undergoing cleavage or the development of embryos to morula and blastocyst stages. The cleavage rates were significantly lower than in the control group (CTR 57.5%) when SOD was present during the insemination interval (IVF) or throughout the entire procedure (IVMFC). Thus when the lower concentration was present for IVF and IVMFC, 35.1% and 36.4% of inseminated oocytes cleaved (P < 0.01 compared to CTR) and cleavage results with the higher concentration during IVF and IVMFC were 38.5% and 29.2% (P < 0.025 and P < 0.001 compared to CTR, respectively). Significant improvements in proportions of oocytes undergoing cleavage (84.5% vs. 57.0%, P < 0.001) and morula/blastocyst development (33.3% vs. 13.9%, P < 0.005) were achieved when GSH (1 mM) was added to the culture medium. In a defined medium for culture (mSOF and BSA) the presence of SOD (3,000 IU/ml) was ineffective, but in a defined medium supplemented with GSH (1 mM) at day 6 postinsemination (i.e., when 90% of developing embryos were in 8-16 cell stages), development to the morula and blastocyst stages was supported for 35.5% of cultured oocytes (P < 0.005 compared to 19.2% for CTR). These data suggest that bovine embryos are sensitive to oxidative stress and that medium supplementation with the radical scavenger glutathione can improve embryo development in vitro.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antioxidants / pharmacology*
  • Cattle
  • Cells, Cultured
  • Culture Media
  • Glutathione / pharmacology*
  • Oocytes / drug effects*
  • Superoxide Dismutase / pharmacology*

Substances

  • Antioxidants
  • Culture Media
  • Superoxide Dismutase
  • Glutathione