Adeno-associated virus type 2-mediated transduction of murine hematopoietic cells with long-term repopulating ability and sustained expression of a human globin gene in vivo

J Virol. 1997 Apr;71(4):3098-104. doi: 10.1128/JVI.71.4.3098-3104.1997.

Abstract

Adeno-associated virus type 2 (AAV), a nonpathogenic human parvovirus, is gaining attention as a vector for potential use in human gene therapy. We and others have described AAV-mediated beta-globin gene transfer and expression in established human and murine erythroleukemia cell lines in vitro. However, successful AAV-mediated globin gene transduction of hematopoietic stem cells and long-term expression in vivo in progeny cells have not been documented. We report here that infection of murine hematopoietic bone marrow cells ex vivo with a recombinant AAV vector containing the genomic copy of a normal human globin gene followed by transplantation of these cells into lethally irradiated congenic mice resulted in efficient gene transfer into hematopoietic cells with long-term repopulating ability as detected by the presence of the human globin gene sequences in bone marrow and spleen in primary recipient mice for at least 6 months. Long-term expression of the human globin gene was also detected in bone marrow, but not in spleen, in primary recipient mice. Furthermore, in secondary-transplant experiments, we were also able to document the presence as well as expression of the transduced human globin gene in mouse bone marrow for up to 3 months. These results provide further support for potential use of the AAV-based vector system in gene therapy of human hemoglobinopathies in general and sickle-cell anemia and beta-thalassemia in particular.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bone Marrow Cells
  • Cell Division
  • Cells, Cultured
  • Cloning, Molecular
  • Dependovirus / genetics*
  • Gene Expression
  • Gene Transfer Techniques*
  • Genetic Vectors*
  • Globins / genetics*
  • Hematopoietic Stem Cell Transplantation
  • Hematopoietic Stem Cells / cytology
  • Hematopoietic Stem Cells / metabolism*
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Time Factors

Substances

  • Globins