Pathogenesis of cerebral edema after treatment of diabetic ketoacidosis

Kidney Int. 1997 Apr;51(4):1237-44. doi: 10.1038/ki.1997.169.


We studied the roles of acidosis, plasma osmolality, and organic osmolytes in the pathogenesis of cerebral edema in an animal model of diabetes mellitus. Normonatremic rats with streptozotocin-induced non-ketotic (NKD) and ketotic (DKA) diabetes were sacrificed before or after treatment with hypotonic saline and insulin. Brains were analyzed for water, electrolyte, and organic osmolyte content. Brain water decreased by 2% in untreated DKA and NKD despite a 12% increase in plasma osmolality due to hyperglycemia. After treatment of both NKD and DKA, brain water increased equivalently by 8%. The cerebral edema that occurred after treatment was associated with decreased brain sodium content and no change in total major brain organic osmolytes in both NKD and DKA. However, brain content of the individual osmolytes glutamine and taurine increased after treatment of DKA. In a separate study, brain water and solute content of rats with DKA were compared after treatment with either hypotonic or isotonic fluid. Animals treated with isotonic fluid had significantly less cerebral edema and higher brain sodium content than those treated with hypotonic fluid. In our studies, brain swelling after treatment of DKA and NKD was primarily due to a rapid reduction of plasma glucose and osmolality, and was not caused by sodium movement into the brain. Acidosis did not appear to play a major role in the pathogenesis of cerebral edema after treatment of DKA.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose / metabolism
  • Brain / metabolism
  • Brain Edema / etiology*
  • Brain Edema / metabolism
  • Brain Edema / prevention & control
  • Diabetes Mellitus, Experimental / complications
  • Diabetes Mellitus, Experimental / metabolism
  • Diabetes Mellitus, Experimental / therapy
  • Diabetic Ketoacidosis / complications*
  • Diabetic Ketoacidosis / metabolism
  • Diabetic Ketoacidosis / therapy*
  • Hypotonic Solutions
  • Insulin / therapeutic use
  • Isotonic Solutions
  • Male
  • Osmolar Concentration
  • Rats
  • Rats, Sprague-Dawley
  • Sodium / metabolism
  • Sodium Chloride / administration & dosage


  • Blood Glucose
  • Hypotonic Solutions
  • Insulin
  • Isotonic Solutions
  • Sodium Chloride
  • Sodium