Gut pain reactions in man: an experimental investigation using short and long duration transmucosal electrical stimulation

Pain. 1997 Feb;69(3):255-62. doi: 10.1016/s0304-3959(96)03244-7.


Visceral pain is a substantial, clinical problem but unfortunately few experimental models are available to study this phenomenon in man. In the present study we inserted a stimulation catheter 5-10 cm into the ileo-sigmoidostomy of nine patients. The catheter contained six small, flexible electrodes separated by 4 mm. The gut was stimulated by single burst, repeated burst (five stimuli delivered at 2 Hz), or continuous burst stimuli (4 Hz for 30, 60, 90, and 120 s). The sensation (ST), pain detection (PDT), and pain tolerance (PTT) thresholds to single/repeated burst stimuli were determined. The location/size/sensitivity of referred pain after repeated/continuous stimulation were characterized. The brain potentials to single burst stimuli and to increasing stimulus intensity were measured. ST to single burst stimuli was easy to determine (8 mA) and to reproduce. The patients found it difficult to determine the PDT and PTT to single burst stimuli, however both thresholds were easily determined for repeated burst stimuli. The pain thresholds to single burst stimuli were twice as high as the thresholds to repeated burst stimuli, indicating the importance of central temporal summation for visceral pain. Minor changes in the stimulus location resulted in changes of the referred pain projection site. The words most frequently selected (78%) from the McGill Pain Questionnaire to describe repeated burst stimulations were shooting, pricking, flashing, and boring. The amplitude of the brain potentials increased at increasing stimulus intensity. A stimulus intensity giving an initial pain rating of around 5 on a 0-10 visual analog scale (VAS) was used for continuous stimulation. A general increase of the pain intensity and the area of referred pain was found during this stimulation. It was concluded that electrical stimulation of the human gut provokes pain and especially long sequences of visceral stimuli are adequate to evoke referred pain mimicking pain profiles of pathologic origin.

Publication types

  • Clinical Trial
  • Controlled Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Electric Stimulation
  • Evoked Potentials / physiology
  • Female
  • Humans
  • Intestinal Mucosa / innervation*
  • Male
  • Middle Aged
  • Pain Measurement
  • Pain Threshold / physiology*
  • Perception / physiology
  • Time Factors