Glucocorticoids may enhance oxygen radical-mediated neurotoxicity

Neurotoxicology. 1996 Fall-Winter;17(3-4):873-82.

Abstract

Modern populations are constantly exposed to a variety of compounds in the workplace and the environment that promote formation of reactive oxygen species (ROS) within susceptible tissues. Due to its high oxygen consumption, the brain may be particularly vulnerable to oxidative damage and degeneration. Agents that impact cellular oxidative homeostasis would therefore be expected to alter the toxicity of ROS generating compounds. We are testing this hypothesis using endogenous stress hormones, glucocorticoids, to perturb neuronal homeostasis, and adriamycin to generate ROS. Glucocorticoids (GCs) are hormones secreted by the adrenals in response to stress, and are also prescribed clinically to control inflammatory and autoimmune disorders in millions of people annually. Therefore, high GC levels may not be uncommon in individuals exposed to low levels of toxic compounds. Also, GCs appear to act on cellular pathways relevant to ROS as seen by their potentiation of neurodegeneration following insults such as stroke, hypoglycemia and seizure. Using rat primary neuronal culture, we determined neuronal susceptibility to adriamycin toxicity by cell counting (using MAP-2 staining). Dichlorofluorescein fluorescence confirmed ROS generation after adriamycin administration. Physiological levels of GCS (up to mM concentrations) in the culture media exacerbated both adriamycin toxicity and ROS generation. We hypothesize that GCs may exacerbate the toxicity of three neurotoxins whose mechanisms of action overlap GC pathways.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Glucocorticoids / toxicity*
  • Hippocampus / drug effects*
  • Neurotoxins / toxicity*
  • Oxygen / toxicity*
  • Rats

Substances

  • Glucocorticoids
  • Neurotoxins
  • Oxygen