Time-course changes of nerve growth factor, corticotropin-releasing hormone, and nitric oxide synthase isoforms and their possible role in the development of inflammatory response in experimental allergic encephalomyelitis

Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3368-73. doi: 10.1073/pnas.94.7.3368.

Abstract

In this paper we report a time-course study of development of experimental allergic encephalomyelitis in Lewis rats, by monitoring neuroendocrine regulation of the hypothalamus-pituitary-adrenal axis through corticotropin-releasing hormone mRNA expression, inflammatory cellular infiltrate, macrophagic and neuronal nitric oxide synthase, nerve growth factor (NGF), and NGF p75 and trkA receptors in the brain and spinal cord. We analyzed animals during 20 days after immunization, a time interval that corresponds to the acute immunological phase. We have described a severe, early fall of corticotropin-releasing hormone mRNA expression, which could account for the decreased response of the hypothalamus-pituitary-adrenal axis to inflammatory stress. During this period, an increase of neuronal nitric oxide synthase was observed in the cerebral cortex and spinal cord, and macrophagic nitric oxide synthase positive cells were found in the inflammatory cellular infiltrate, which was abundant in perivascular and submeningeal areas 20 days after immunization. Concomitantly, we found a dramatic up-regulation of NGF receptors on the wall of blood vessels and adjacent neurons in perivascular areas. NGF content also had increased in some brain areas, such as the thalamus, while it had decreased in others, like the spinal cord and medulla oblongata, at time points in which the most serious cellular infiltrate was found.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenal Glands / physiology
  • Animals
  • Corticotropin-Releasing Hormone / metabolism*
  • Encephalomyelitis, Autoimmune, Experimental / enzymology
  • Encephalomyelitis, Autoimmune, Experimental / metabolism
  • Encephalomyelitis, Autoimmune, Experimental / pathology*
  • Female
  • Hypothalamo-Hypophyseal System / physiology
  • Immunohistochemistry
  • Isoenzymes / metabolism*
  • Kinetics
  • Nerve Growth Factors / metabolism*
  • Nitric Oxide Synthase / genetics
  • Nitric Oxide Synthase / metabolism*
  • RNA, Messenger / metabolism
  • Rats
  • Rats, Inbred Lew
  • Receptors, Nerve Growth Factor / metabolism

Substances

  • Isoenzymes
  • Nerve Growth Factors
  • RNA, Messenger
  • Receptors, Nerve Growth Factor
  • Corticotropin-Releasing Hormone
  • Nitric Oxide Synthase