Properties of unitary IPSCs in hippocampal pyramidal cells originating from different types of interneurons in young rats

J Neurophysiol. 1997 Apr;77(4):1939-49. doi: 10.1152/jn.1997.77.4.1939.


Whole cell recordings were used in hippocampal slices of young rats to examine unitary inhibitory postsynaptic currents (uIPSCs) evoked in CA1 pyramidal cells at room temperature. Loose cell-attached stimulation was applied to activate single interneurons of different subtypes located in stratum oriens (OR), near stratum pyramidale (PYR), and at the border of stratum radiatum and lacunosum-moleculare (LM). uIPSCs evoked by stimulation of PYR and OR interneurons had similar onset latency, rise time, peak amplitude, and decay. In contrast, uIPSCs elicited by activation of LM interneurons were significantly smaller in amplitude and had a slower time course. The mean reversal potential of uIPSCs was -53.1 +/- 2.1 (SE) mV during recordings with intracellular solution containing potassium gluconate. With the use of recording solution containing the potassium channel blocker cesium, the reversal potential of uIPSCs was not significantly different (-58.5 +/- 2.6 mV), suggesting that these synaptic currents were not mediated by potassium conductances. Bath application of the gamma-aminobutyric acid-A (GABA(A)) receptor antagonist bicuculline (25 microM) reversibly blocked uIPSCs evoked by stimulation of all interneuron subtypes. In bicuculline, the mean peak amplitude of uIPSCs recorded with potassium gluconate was reduced to 3.5 +/- 4.4% of control (n = 7). Similarly, with cesium methanesulfonate, the mean amplitude in bicuculline was 2.9 +/- 3.1% of control (n = 13). Application of the GABA(B) receptor antagonist CGP 55845A (5 microM) resulted in a significant and reversible increase in the mean amplitude of uIPSCs recorded with cesium-containing intracellular solution. Thus uIPSCs from all cell types appeared under tonic presynaptic inhibition by GABA(B) receptors. Paired stimulation of individual interneurons at 100- to 200-ms intervals did not result in paired pulse depression of uIPSCs. For individual responses, a significant negative correlation was observed between the amplitude of the first and second uIPSCs. A significant paired pulse facilitation (154.0 +/- 8.0%) was observed when the first uIPSC was smaller than the mean of all first uIPSCs. A small, but not significant, paired pulse depression (90.8 +/- 4.0%) was found when the first uIPSC was larger than the mean of all first uIPSCs. Our results indicate that these different subtypes of hippocampal interneurons generate Cl(-)-mediated GABA(A) uIPSCs. uIPSCs originating from different types of interneurons may have heterogeneous properties and may be subject to tonic presynaptic inhibition via heterosynaptic GABA(B) receptors. These results suggest a specialization of function for inhibitory interneurons and point to complex presynaptic modulation of interneuron function.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chloride Channels / physiology*
  • Evoked Potentials / physiology
  • In Vitro Techniques
  • Interneurons / physiology*
  • Male
  • Membrane Potentials / physiology
  • Patch-Clamp Techniques
  • Pyramidal Cells / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, GABA-A / physiology*
  • Synaptic Transmission / physiology*


  • Chloride Channels
  • Receptors, GABA-A