Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo

J Neurophysiol. 1997 Jan;77(1):353-63. doi: 10.1152/jn.1997.77.1.353.

Abstract

The companion paper demonstrated that the responses of lateral amygdaloid (LAT) projection neurons to the stimulation of major input and output structures are dominated by monophasic hyperpolarizing potentials of large amplitude. To characterize the mechanisms underlying these inhibitory potentials, intracellular recordings of cortically evoked responses were obtained from morphologically and/or physiologically identified LAT projection neurons in barbiturate anesthetized cats. The reversal potential of the cortically evoked hyperpolarization was measured at its peak, and 115 ms later (tail), an interval corresponding to the peak latency of the gamma-aminobuturic acid-B (GABAB) response previously recorded in vitro. When recorded with K-acetate (KAc) pipettes, these reversal potentials were -86.9 +/- 1.6 mV (peak; mean +/- SE) and -90.7 +/- 1.7 mV (tail), suggesting that both Cl- and K+ conductances contribute throughout the cortically evoked hyperpolarization. The small, but consistent, difference between the two reversal potentials suggested that an additional slowly activating K(+)-mediated component contributed to the inhibitory postsynaptic potential (IPSP) tail. To determine whether Cl- conductances contributed to the evoked hyperpolarization, recordings were performed with KCl; the peak (-57.8 +/- 2.2 mV) and tail (-61.3 +/- 2.1 mV) reversal potentials were approximately 15-20 mV more depolarized than those recorded with KAc pipettes. However, the difference between the peak and tail reversals remained. In an attempt to block the Cl- conductance, recordings were obtained with pipettes filled with KAc or KCl and 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS), a Cl- pump blocker that also was reported to block GABAA responses. With KAc and DIDS, the initial depolarization was prolonged and the amplitude of the hyperpolarization decreased relative to that seen with KAc alone. However, with KCl and DIDS, the reversal potential was shifted to an even greater extent than with KCl pipettes with the evoked response consisting entirely of a large depolarization, which produced a spike burst. These results suggest that LAT neurons have a Cl- pump that is blocked by DIDS, but that their Cl- channels are not blocked by DIDS. To assess the contribution of K+ conductances to cortically evoked hyperpolarizing potentials, recordings were obtained with Cs-acetate pipettes. Under these conditions, the response reversed at more depolarized potentials (peak, -71.9 +/- 1.0 mV; tail, -72.0 +/- 0.9 mV) compared with KAc recordings, with no difference between the peak and tail reversal potentials. These cells also had depolarized resting potentials (-66.2 +/- 1.8 mV) compared with those of cells recorded with KAc pipettes (-73.6 +/- 1.8 mV); however, this difference was too small to attribute the shift in reversals to a redistribution of Cl- ions across the membrane. The action potentials generated by LAT neurons under Cs+ had a shoulder that prolonged their falling phase. The increased duration of the spikes was presumably due to a dendritic Ca2+ conductance because LAT amygdaloid neurons are known to possess such conductances and Cs+ blocks the delayed rectifier and some Ca(2+)-dependent K+ currents. The dramatic reduction of this shoulder by spontaneous and evoked IPSPs suggests that the activation of dendritic conductances by back-propagating somatic action potentials is regulated tightly by synaptic events. Intracellular injection of the Ca2+ chelating agent, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (100 mM) caused a depolarization of the peak (-75.3 +/- 1.3 mV) and tail (-77.7 +/- 1.7 mV) reversal potentials during a time course of 15-45 min. Concurrently, the amplitude of the excitatory postsynaptic potential increased whereas that of the hyperpolarization decreased, suggesting that a Ca(2+)-dependent K+ conductance contributes significantly to the evoked hyperpolarization. (ABSTRACT TRUNCATED)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid / pharmacology
  • Action Potentials / drug effects
  • Action Potentials / physiology
  • Amygdala / cytology
  • Amygdala / physiology*
  • Animals
  • Cats
  • Cesium / pharmacology
  • Chelating Agents / pharmacology
  • Chloride Channels / drug effects
  • Chloride Channels / metabolism
  • Egtazic Acid / analogs & derivatives
  • Egtazic Acid / pharmacology
  • Neural Conduction / physiology*
  • Neural Pathways / cytology
  • Neural Pathways / physiology
  • Neurons
  • Potassium Channels / drug effects
  • Potassium Channels / physiology
  • Potassium Chloride / pharmacology
  • Receptors, GABA-A / drug effects
  • Receptors, GABA-A / metabolism
  • Synapses / physiology*

Substances

  • Chelating Agents
  • Chloride Channels
  • Potassium Channels
  • Receptors, GABA-A
  • Cesium
  • Egtazic Acid
  • Potassium Chloride
  • 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
  • 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid