This review will consider whether nitric oxide (NO) contributes to maternal systemic vasodilation during pregnancy, regulates uterine and fetoplacental blood flow, and is involved in uterine quiescence prior to parturition. Also, whether a deficiency of NO contributes to the hypertensive disorder of pregnancy, preeclampsia, will be considered. The biosynthesis of NO increases in gravid rats and sheep, but the status in normal human pregnancy and preeclampsia is controversial. NO contributes to maternal systemic vasodilation and reduced vascular reactivity during normal pregnancy; however, the relative contribution of NO is variable depending on the animal species, vascular bed, and vessel size. Impaired relaxation responses to acetylcholine, but not bradykinin or NO donors, are observed in small arteries from women with preeclampsia, suggesting a receptor or signal transduction defect, although NO may play little, if any, role here. Uterine arteries have increased endothelial nitric oxide synthase (NOS) activity, protein expression, and guanosine 3',5'-cyclic monophosphate production during pregnancy; however, whether these mediate uterine vasodilation during pregnancy remains to be established. NOS is expressed in the human placental syncytiotrophoblast and in the fetoplacental and umbilical vascular endothelium where basal production of NO contributes to low fetoplacental vascular resistance. Controversy exists over the status of placental NOS in preeclampsia, although an abnormality of umbilical NOS activity is likely. Finally, the uterus has NOS activity, which decreases at the end of gestation, and exogenous NO relaxes the myometrium, but whether endogenous NO contributes to uterine quiescence during pregnancy has yet to be confirmed.