Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter

Cereb Cortex. Apr-May 1997;7(3):268-82. doi: 10.1093/cercor/7.3.268.

Abstract

In a prospective cross-sectional study, we used computerized volumetry of magnetic resonance images to examine the patterns of brain aging in 148 healthy volunteers. The most substantial age-related decline was found in the volume of the prefrontal gray matter. Smaller age-related differences were observed in the volume of the fusiform, inferior temporal and superior parietal cortices. The effects of age on the hippocampal formation, the postcentral gyrus, prefrontal white matter and superior parietal white matter were even weaker. No significant age-related differences were observed in the parahippocampal and anterior cingulate gyri, inferior parietal lobule, pericalcarine gray matter, the precentral gray and white matter, postcentral white matter and inferior parietal white matter. The volume of the total brain volume and the hippocampal formation was larger in men than in women even after adjustment for height. Inferior temporal cortex showed steeper aging trend in men. Small but consistent rightward asymmetry was found in the whole cerebral hemispheres, superior parietal, fusiform and orbito-frontal cortices, postcentral and prefrontal white matter. The left side was larger than the right in the dorsolateral prefrontal, parahippocampal, inferior parietal and pericalcarine cortices, and in the parietal white matter. However, there were no significant differences in age trends between the hemispheres.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aged
  • Aging / pathology
  • Aging / physiology*
  • Body Height / physiology
  • Cerebral Cortex / pathology
  • Cerebral Cortex / physiology*
  • Cross-Sectional Studies
  • Female
  • Functional Laterality / physiology
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Models, Neurological
  • Organ Specificity
  • Prefrontal Cortex / pathology
  • Prefrontal Cortex / physiology*
  • Prospective Studies
  • Sex Characteristics