Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr 25;268(1):54-68.
doi: 10.1006/jmbi.1997.0935.

Multiple interactions stabilize a single paused transcription intermediate in which hairpin to 3' end spacing distinguishes pause and termination pathways

Affiliations

Multiple interactions stabilize a single paused transcription intermediate in which hairpin to 3' end spacing distinguishes pause and termination pathways

C L Chan et al. J Mol Biol. .

Abstract

Transcription is delayed in the leader regions of the Escherichia coli trp and his operons by multipartite pause signals that consist of four components: a nascent RNA structure (the pause hairpin), the 10 or 11 nt 3'-proximal region between the pause hairpin and the RNA 3' end, the bases in the active site, and approximately 14 bp of duplex DNA downstream from the pause site. Results described in the accompanying paper suggest that the his pause hairpin slows nucleotide addition via interaction with an easily disordered surface on RNA polymerase. Here we report that the four pause signal components slow nucleotide addition in a single kinetic intermediate. Formation of the paused transcription complex, in contrast, involves synergistic effects of RNA and DNA sequences that select the wild-type pause site from among several adjacent possibilities. Extending the pause hairpin with one G x C base-pair reduces pausing, apparently by interfering with pause hairpin interaction; adding a second C x G base-pair that reduces the 3'-proximal RNA to 9 nt or less (within the 7 to 9 nt characteristic of rho-independent terminators) induces transcript release. We propose that escape from the pause is governed by a rate-limiting isomerization that may require substrate NTP binding to re-establish the active site geometry, whereas transcript release and termination ensue when the hairpin interaction is weakened and isomerization to an active conformation is blocked.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources