Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May 15;9(4):721-63.
doi: 10.1162/neco.1997.9.4.721.

Dynamic model of visual recognition predicts neural response properties in the visual cortex

Affiliations

Dynamic model of visual recognition predicts neural response properties in the visual cortex

R P Rao et al. Neural Comput. .

Abstract

The responses of visual cortical neurons during fixation tasks can be significantly modulated by stimuli from beyond the classical receptive field. Modulatory effects in neural responses have also been recently reported in a task where a monkey freely views a natural scene. In this article, we describe a hierarchical network model of visual recognition that explains these experimental observations by using a form of the extended Kalman filter as given by the minimum description length (MDL) principle. The model dynamically combines input-driven bottom-up signals with expectation-driven top-down signals to predict current recognition state. Synaptic weights in the model are adapted in a Hebbian manner according to a learning rule also derived from the MDL principle. The resulting prediction-learning scheme can be viewed as implementing a form of expectation-maximization (EM) algorithm. The architecture of the model posits an active computational role of the reciprocal connections between adjoining visual cortical areas in determining neural response properties. In particular, the model demonstrates the possible role of feedback from higher cortical areas in mediating neurophysiological effects due to stimuli from beyond the classical receptive field. Simulations of the model are provided that help explain the experimental observations regarding neural responses in both free viewing and fixation conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources