Rat liver d-3-phosphoglycerate dehydrogenase was purified to homogeneity and digested with trypsin, and the sequences of two peptides were determined. This sequence information was used to screen a rat hepatoma cDNA library. Among 11 positive clones, two covered the whole coding sequence. The deduced amino acid sequence (533 residues; Mr 56493) shared closer similarity with Bacillus subtilis 3-phosphoglycerate dehydrogenase than with the enzymes from Escherichia coli, Haemophilus influenzae and Saccharomyces cerevisiae. In all cases the similarity was most apparent in the substrate- and NAD+-binding domains, and low or insignificant in the C-terminal domain. A corresponding 2.1 kb mRNA was present in rat tissues including kidney, brain and testis, whatever the dietary status, and also in livers of animals fed a protein-free, carbohydrate-rich diet, but not in livers of control rats, suggesting transcriptional regulation. The full-length rat 3-phosphoglycerate dehydrogenase was expressed in E. coli and purified. The recombinant enzyme and the protein purified from liver displayed hyperbolic kinetics with respect to 3-phosphoglycerate, NAD+ and NADH, but substrate inhibition by 3-phosphohydroxypyruvate was observed; this inhibition was antagonized by salts. Similar properties were observed with a truncated form of 3-phosphoglycerate dehydrogenase lacking the C-terminal domain, indicating that the latter is not implicated in substrate inhibition or in salt effects. By contrast with the bacterial enzyme, rat 3-phosphoglycerate dehydrogenase did not catalyse the reduction of 2-oxoglutarate, indicating that this enzyme is not involved in human D- or L-hydroxyglutaric aciduria.