Insulin mediators in man: effects of glucose ingestion and insulin resistance

Diabetologia. 1997 May;40(5):557-63. doi: 10.1007/s001250050715.


Insulin mediators (inositol phosphoglycans) have been shown to mimic insulin action in vitro and in intact mammals, but it is not known which mediator is involved in insulin action under physiological conditions, nor is it known whether insulin resistance alters the mediator profile under such conditions. We therefore investigated the effects of glucose ingestion on changes in the bioactivity of serum inositol phosphoglycan-like substances (IPG) in healthy men and insulin resistant (obese, non-insulin-dependent diabetic) men. Two classes of mediators were partially purified from serum before and after glucose ingestion. The first was eluted from an anion exchange resin with HCl pH 2.0, and bioactivity was determined by activation of pyruvate dehydrogenase in vitro. The second was eluted with HCl pH 1.3, and bioactivity was determined by inhibition of cyclic AMP-dependent protein kinase. In healthy men, the bioactivity of the pH 1.3 IPG was not altered by glucose ingestion, whereas bioactivity of the pH 2.0 IPG increased to approximately 120% of the pre-glucose ingestion value at 60-240 min post-glucose ingestion (p < 0.05 vs pre-glucose). There was no change in either IPG after glucose ingestion in the insulin-resistant group. These data suggest that the pH 2.0 IPG plays an important role in mediating insulin's effect on peripheral glucose utilization in man under physiological conditions. The data further show, for the first time, a defective change in the bioactivity of an insulin mediator isolated from insulin-resistant humans after hyperinsulinaemia, suggesting that inadequate generation/release of IPGs is associated with insulin resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose / metabolism
  • C-Peptide / blood
  • Diabetes Mellitus / blood*
  • Diabetes Mellitus / physiopathology
  • Diabetes Mellitus, Type 2 / blood*
  • Diabetes Mellitus, Type 2 / physiopathology
  • Dietary Carbohydrates*
  • Glucose*
  • Humans
  • Inositol Phosphates / blood*
  • Inositol Phosphates / isolation & purification
  • Inositol Phosphates / pharmacology
  • Insulin / blood
  • Insulin Antagonists / blood*
  • Insulin Antagonists / isolation & purification
  • Insulin Antagonists / pharmacology
  • Insulin Resistance*
  • Kinetics
  • Male
  • Middle Aged
  • Myocardium / enzymology
  • Obesity*
  • Polysaccharides / blood*
  • Polysaccharides / isolation & purification
  • Polysaccharides / pharmacology
  • Pyruvate Dehydrogenase Complex / metabolism
  • Reference Values
  • Swine
  • Time Factors


  • Blood Glucose
  • C-Peptide
  • Dietary Carbohydrates
  • Inositol Phosphates
  • Insulin
  • Insulin Antagonists
  • Polysaccharides
  • Pyruvate Dehydrogenase Complex
  • inositol phosphate glycan
  • Glucose