Biological and conformational examination of stereochemical modifications using the template melanotropin peptide, Ac-Nle-c[Asp-His-Phe-Arg-Trp-Ala-Lys]-NH2, on human melanocortin receptors

J Med Chem. 1997 May 23;40(11):1738-48. doi: 10.1021/jm960845e.

Abstract

Examination of conformationally constrained melanotropin peptide (Ac-Nle4-c[Asp5-His-Phe7-Arg-Trp9-Ala-Lys]-NH2) on four human melanotropin receptors (hMC1R, hMC3R, hMC4R, and hMC5R) resulted in identifying the importance of ligand stereochemistry at positions 5, 7, and 9 for agonist binding affinity and receptor selectivity. A trend in ligand structure-activity relationships emerged for these peptides, with the hMC1R and hMC4R possessing similar tendencies, as did the hMC3R and hMC5R. alpha-MSH (Ac-Ser-Tyr-Ser-Met4-Glu-His-Phe7-Arg-Trp-Gly-Lys-Pro-Val-NH2), NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-D-Phe7-Arg-Trp-Gly-Lys-Pro-Val-NH2), and MTII (Ac-Nle4-c[Asp5,D-Phe7,Lys10]-alpha-MSH(4-10)-NH2) were also examined at each of these melanocortin receptors. Interestingly, the linear NDP-MSH possessed greater binding affinity for the hMC3R and hMC5R than did the cyclic analogue MTII. The peptide Ac-Nle-c[Asp-His-Phe-Arg-D-Trp9-Ala-Lys]-NH2 demonstrated the greatest differentiation in binding affinity between the hMC1R and hMC4R (78-fold). Analogue Ac-Nle-c[Asp-His-Phe7-Arg-Trp-Ala-Lys]-NH2 resulted in micromolar binding affinity (or greater) at the hMC3R and hMC5R, demonstrating the importance of D-Phe7 for ligand binding potency at these receptors. Ac-c[Asp-His-Phe-Arg-Trp-Ala-Lys]-NH2 resulted in loss of binding affinity at the hMC5R, implicating the importance of Nle4 (or a hydrophobic residue in this position) for binding to this receptor. Ac-Nle-c[D-Asp5-His-Phe-Arg-Trp-Ala-Lys]-NH2 was unable to competitively displace [125I]NDP-MSH binding at micromolar concentrations on the hMC3R and hMC5R, suggesting the importance of chirality of Asp5 either for ligand-receptor interactions or for orientation of the side chain lactam bridge and the structural integrity of the peptide conformation. Energy calculations performed for these peptides resulted in the identification of a low-energy ligand conformer family that is common to all the ligands. The differences in ligand binding affinities observed in this study are postulated to be a result of different ligand-receptor complexed interactions and not solely to the ligand structure.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Chromatography, High Pressure Liquid
  • Cyclic AMP / metabolism
  • Cyclization
  • Humans
  • Melanocyte-Stimulating Hormones / chemistry*
  • Melanocyte-Stimulating Hormones / metabolism*
  • Peptide Fragments / chemistry*
  • Peptide Fragments / metabolism*
  • Protein Conformation
  • Receptors, Corticotropin / metabolism*
  • Receptors, Melanocortin
  • Second Messenger Systems
  • Spectrometry, Mass, Fast Atom Bombardment
  • Structure-Activity Relationship
  • Templates, Genetic
  • Thermodynamics

Substances

  • Peptide Fragments
  • Receptors, Corticotropin
  • Receptors, Melanocortin
  • Melanocyte-Stimulating Hormones
  • Cyclic AMP