Characterization of a class II pilin expression locus from Neisseria meningitidis: evidence for increased diversity among pilin genes in pathogenic Neisseria species

Infect Immun. 1997 Jul;65(7):2613-20. doi: 10.1128/iai.65.7.2613-2620.1997.

Abstract

Strains of Neisseria meningitidis elaborate one of two classes of pili. Meningococcal class I pili have many features in common with pili produced by N. gonorrhoeae, including the ability to bind monoclonal antibody SM1 and a common gene and protein structure consisting of conserved, semivariable, and hypervariable regions. Class II pili are SM1 nonreactive and display smaller subunit molecular weights than do gonococcal or meningococcal class I pili. In this study, we have determined the N-terminal amino acid sequence for class II pilin and isolated the expression locus encoding class II pilin from N. meningitidis FAM18. Meningococcal class II pilin displays features typical of type IV pili and shares extensive amino acid identity with the N-terminal conserved regions of other neisserial pilin proteins. However, the deduced class II pilin sequence displays several unique features compared with previously reported meningococcal class I and gonococcal pilin sequences. Class II pilin lacks several conserved peptide regions found within the semivariable and hypervariable regions of other neisserial pilins and displays a large deletion in a hypervariable region of the protein believed to be exposed on the pilus face in gonococcal pili. DNA sequence comparisons within all three regions of the coding sequence also suggest that the meningococcal class II pilin gene is the most dissimilar of the three types of neisserial pilE loci. Additionally, the class II locus fails to display flanking-sequence homology to class I and gonococcal genes and lacks a downstream Sma/Cla repeat sequence, a feature present in all other neisserial pilin genes examined to date. These data indicate meningococcal class II pili represent a structurally distinct class of pili and suggest that relationships among pilin genes in pathogenic Neisseria do not necessarily follow species boundaries.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Bacterial Outer Membrane Proteins / genetics*
  • Base Sequence
  • Fimbriae Proteins
  • Genetic Variation
  • Molecular Sequence Data
  • Neisseria meningitidis / genetics*

Substances

  • Bacterial Outer Membrane Proteins
  • Fimbriae Proteins

Associated data

  • GENBANK/U81551