Phosphorylation of ligand-gated ion channels is recognised as a potentially important mechanism for short- and long-term modulation of ion-channel function. Following the discovery of numerous sites of phosphorylation on ligand-gated ion channel proteins, recent studies have demonstrated that neurotransmitter-induced activation of serine/threonine, tyrosine and other kinases can result in the modulation of glutamate, type A gamma-aminobutyric acid (GABAA) and glycine receptors. These findings may have important consequences for our understanding of synaptic transmission and neuronal excitability.