Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jun 27;761(1):97-104.
doi: 10.1016/s0006-8993(97)00316-8.

DOI disrupts prepulse inhibition of startle in rats via 5-HT2A receptors in the ventral pallidum

Affiliations

DOI disrupts prepulse inhibition of startle in rats via 5-HT2A receptors in the ventral pallidum

T E Sipes et al. Brain Res. .

Abstract

Serotonin (5-HT)2A receptors are known to be involved in prepulse inhibition of the startle response (PPI), a measure of sensorimotor inhibition that is deficient in schizophrenia, Huntington's disease, and obsessive compulsive disorder. In the present studies, the localization of the 5-HT2A receptors responsible for modulating PPI was investigated using central injections of the hallucinogenic 5-HT2 agonist DOI and the novel 5-HT2A antagonist MDL 100,907. 5-HT2A receptors are densely localized in the nucleus accumbens (NAC) and the ventral pallidum (VP), areas known to be important components of neural circuitry that mediates the ventral forebrain modulation of PPI. In the present studies, it was found that the infusion of DOI (0.0-5.0 microg/0.5 microl) into the VP disrupted PPI without having effects on startle reactivity. In contrast, similar infusions into the NAC had no effect on PPI or startle reactivity. The infusion of MDL 100,907 into the VP was found to increase PPI by itself and to attenuate the PPI-disruptive effects of systemically administered DOI. It is concluded that 5-HT2A receptors within the VP are important for the modulation of PPI, presumably through interactions at intrinsic GABAergic or cholinergic interneurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources