The long QT syndrome: a novel missense mutation in the S6 region of the KVLQT1 gene

Hum Genet. 1997 Sep;100(3-4):356-61. doi: 10.1007/s004390050516.


The Romano Ward long QT syndrome (LQTS) has an autosomal dominant mode of inheritance. Patients suffer from syncopal attacks often resulting in sudden cardiac death. The main diagnostic parameter is a prolonged QT(c) interval as judged by electro-cardiographic investigation. LQTS is a genetically heterogeneous disease with four loci having been identified to date: chromosome 11p15.5 (LQT1), 7q35-36 (LQT2), 3p21-24 (LQT3) and 4q25-26 (LQT4). The corresponding genes code for potassium channels KVLQT1 (LQT1) and HERG (LQT2) and the sodium channel SCN5A (LQT3). The KVLQT1 gene is characterized by six transmembrane domains (S1-S6), a pore region situated between the S5 and S6 domains and a C-terminal domain accounting for approximately 60% of the channel. This domain is thought to be co-associated with another protein, viz. minK (minimal potassium channel). We have studied a Romano Ward family with several affected individuals showing a severe LQTS phenotype (syncopes and occurrence of sudden death). Most affected individuals had considerable prolongations of QT(c). By using haplotyping with a set of markers covering the four LQT loci, strong linkage was established to the LQT1 locus, whereas the other loci (LQT2, LQT3 and LQT4) could be excluded. Single-strand conformation polymorphism analysis and direct sequencing were used to screen the KVLQT1 gene for mutations in the S1-S6 region, including the pore domain. We identified a Gly-216-Arg substitution in the S6 transmembrane domain of KVLQT1. The mutation was present in all affected family members but absent in normal control individuals, providing evidence that the mutated KVLQT1-gene product indeed caused LQTS in this family. The mutated KVLQT1-gene product thus probably results in a dominant negative suppression of channel activity.

MeSH terms

  • DNA Mutational Analysis
  • Female
  • Genetic Linkage
  • Humans
  • KCNQ Potassium Channels
  • KCNQ1 Potassium Channel
  • Long QT Syndrome / genetics*
  • Male
  • Mutation*
  • Pedigree
  • Potassium Channels / genetics*
  • Potassium Channels, Voltage-Gated*


  • KCNQ Potassium Channels
  • KCNQ1 Potassium Channel
  • KCNQ1 protein, human
  • Potassium Channels
  • Potassium Channels, Voltage-Gated