Pharmacological distinction between dantrolene and ryanodine binding sites: evidence from normal and malignant hyperthermia-susceptible porcine skeletal muscle

Biochem J. 1997 Sep 15;326 ( Pt 3)(Pt 3):847-52. doi: 10.1042/bj3260847.

Abstract

Dantrolene inhibits and ryanodine stimulates calcium release from skeletal-muscle sarcoplasmic reticulum (SR), the former by an unknown mechanism, and the latter by activating the ryanodine receptor (RyR), the primary Ca2+-release channel of SR. Dantrolene is used to treat malignant hyperthermia (MH), a genetic predisposition to excessive intracellular Ca2+ release upon exposure to volatile anaesthetics. Porcine MH results from a point mutation in the SR RyR that alters the open probability of the channel, and is reflected in altered [3H]ryanodine binding parameters. Specific binding sites for [3H]dantrolene and [3H]ryanodine co-distribute on SR that has been isolated by discontinuous sucrose gradient centrifugation. If the two drug-binding sites are functionally linked, [3H]dantrolene binding might be affected both by pharmacological and by genetic modulators of the functional state of the RyR. Accordingly, we compared the characteristics of [3H]dantrolene binding to porcine malignant-hyperthermia-susceptible and normal-skeletal-muscle SR, and examined the effects of RyR modulators on [3H]dantrolene binding to these membranes. Additionally, the feasibility of separating the SR binding sites for [3H]dantrolene and [3H]ryanodine was investigated. No significant differences in [3H]dantrolene binding characteristics to SR membranes from the two muscle types were detected, and the Bmax ratio for [3H]dantrolene/[3H]ryanodine was 1.4(+/-0.1):1 in both muscle types. [3H]Dantrolene binding is unaffected by the RyR modulators caffeine, ryanodine, Ruthenium Red and calmodulin, and neither dantrolene nor azumolene have any effect on [3H]ryanodine binding. Additionally, distinct peaks of [3H]dantrolene and [3H]ryanodine binding are detected in SR membranes fractionated by linear sucrose centrifugation, although no differences in protein patterns are detected by SDS/PAGE or Western-blot analysis. We suggest that the binding sites for these two drugs are pharmacologically distinct, and may exist on separate molecules.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Binding Sites
  • Cell Membrane / metabolism
  • Dantrolene / metabolism
  • Dantrolene / pharmacology*
  • Malignant Hyperthermia / metabolism*
  • Malignant Hyperthermia / pathology
  • Muscle Relaxants, Central / metabolism
  • Muscle Relaxants, Central / pharmacology*
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / pathology
  • Osmolar Concentration
  • Radioligand Assay
  • Ryanodine / metabolism
  • Ryanodine / pharmacology*
  • Swine

Substances

  • Muscle Relaxants, Central
  • Ryanodine
  • Dantrolene