Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions

Drug Metab Dispos. 1997 Sep;25(9):1072-80.


The synthetic opioid fentanyl undergoes extensive metabolism in humans. Systemic elimination occurs primarily by hepatic metabolism. When administered as a lozenge for oral transmucosal absorption, swallowed fentanyl is subject to first pass metabolism in the liver and possibly small intestine. Little is known, however, about the identity and formation of human fentanyl metabolites. This investigation identified routes of human liver microsomal fentanyl metabolism and their relative importance, tested the hypothesis that fentanyl is metabolized by human duodenal microsomes, and identified the predominantly responsible cytochrome P450 isoforms. A GC/MS assay using deuterated internal standards was developed for fentanyl metabolites. Piperidine N-dealkylation to norfentanyl was the predominant pathway of liver microsomal metabolism. Amide hydrolysis to despropionylfentanyl and alkyl hydroxylation to hydroxyfentanyl were comparatively minor pathways. Hydroxynorfentanyl was identified as a minor, secondary metabolite arising from N-dealkylation of hydroxyfentanyl. Liver microsomal norfentanyl formation was significantly inhibited by the mechanism-based P450 3A4 inhibitor troleandomycin and the P450 3A4 substrate and competitive inhibitor midazolam, and was significantly correlated with P450 3A4 protein content and catalytic activity. Of six expressed human P450 isoforms (P450s 1A2, 2B6, 2C9, 2D6, 2E1, and 3A4), only P450 3A4 exhibited significant fentanyl dealkylation to norfentanyl. These results indicate the predominant role of P450 3A4 in the primary route of hepatic fentanyl metabolism. Human duodenal microsomes also catalyzed fentanyl metabolism to norfentanyl; the average rate was approximately half that of hepatic metabolism. Rates of duodenal norfentanyl formation were diminished by troleandomycin and midazolam, and were significantly correlated with P450 3A4 activity, suggesting a prominent role for P450 3A4. These results demonstrate that human intestinal as well as liver microsomes catalyze fentanyl metabolism, and N-dealkylation by P450 3A4 is the predominant route in both organs. The fraction of fentanyl lozenge that is swallowed likely undergoes significant intestinal, as well as hepatic, first-pass metabolism. Intestinal and hepatic first-pass metabolism, as well as systemic metabolism, may be subject to individual variability in P450 3A4 expression and to drug interactions involving P450 3A4.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Analgesics, Opioid / metabolism*
  • Cytochrome P-450 CYP3A
  • Cytochrome P-450 Enzyme System / metabolism*
  • Duodenum / metabolism*
  • Fentanyl / metabolism*
  • Humans
  • Microsomes / metabolism*
  • Microsomes, Liver / metabolism*
  • Mixed Function Oxygenases / metabolism*


  • Analgesics, Opioid
  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • CYP3A protein, human
  • Cytochrome P-450 CYP3A
  • Fentanyl