A role for Ca2+/calmodulin-dependent protein kinase II in the mitogen-activated protein kinase signaling cascade of cultured rat aortic vascular smooth muscle cells

Circ Res. 1997 Oct;81(4):575-84. doi: 10.1161/01.res.81.4.575.

Abstract

Exposure of cultured rat aortic vascular smooth muscle (VSM) cells to the Ca2+ ionophore ionomycin produced an increase in extracellular signal-regulated kinase 1/2 (ERK1/2) activity that was maximal between 2 and 5 minutes but then declined to basal values within 20 minutes of stimulation. Elevation of [Ca2+]i in VSM cells leads to an even more rapid activation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II); thus, it was postulated that the Ca(2+)-dependent component of ERK1/2 activation was mediated by CaM kinase II. Transient ERK1/2 activation by ionomycin was almost completely abolished by pretreating cells with 30 mumol/L KN-93, a CaM kinase II inhibitor. Treatment of cells with KN-93 did not antagonize the ability of ionomycin to mobilize intracellular Ca2+ but prevented CaM kinase II and ERK1/2 activation with almost identical potencies. Consistent with a role for Ca2+ and calmodulin in intracellular Ca(2+)-induced activation of ERK, cells pretreated with calmodulin inhibitors (W-7 or calmidazolium) exhibited an attenuated ERK response to ionomycin. ERK1/2 activation in response to phorbol esters and platelet-derived growth factor were not significantly affected by KN-93, whereas the response to angiotensin II and thrombin were attenuated by 60% and 40%, respectively. Transient expression of wild-type delta 2 CaM kinase II in COS-7 cells resulted in increased ERK2 activity, whereas coexpression of wild-type and a kinase-negative mutant resulted in a diminution of this response. These data suggest that regulation of cellular responses by Ca(2+)-dependent pathways in VSM cells may be mediated in part by CaM kinase II-dependent activation of ERK1/2.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Aorta / cytology
  • Aorta / metabolism*
  • Benzylamines / pharmacology
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism
  • Calcium-Calmodulin-Dependent Protein Kinases / physiology*
  • Cells, Cultured
  • Enzyme Activation
  • Enzyme Induction
  • Enzyme Inhibitors / pharmacology
  • Ionomycin / pharmacology
  • Ionophores
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases*
  • Mitogens / pharmacology*
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / metabolism*
  • Protein Kinase Inhibitors
  • Protein Kinases / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Signal Transduction*
  • Sulfonamides / pharmacology

Substances

  • Benzylamines
  • Enzyme Inhibitors
  • Ionophores
  • Mitogens
  • Protein Kinase Inhibitors
  • Sulfonamides
  • KN 93
  • Ionomycin
  • Protein Kinases
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases