Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton

J Bone Miner Res. 1997 Oct;12(10):1737-45. doi: 10.1359/jbmr.1997.12.10.1737.


Physical activity is capable of increasing adult bone mass. The specific osteogenic component of the mechanical stimulus is, however, unknown. Using an exogenous loading model, it was recently reported that circumferential gradients of longitudinal normal strain are strongly associated with the specific sites of periosteal bone formation. Here, we used high-speed running to test this proposed relation in an exercise model of bone adaptation. The strain environment generated during running in a mid-diaphyseal tarsometatarsal section was determined from triple-rosette strain gages in six adult roosters (>1 year). A second group of roosters was run at a high speed (1500 loading cycles/day) on a treadmill for 3 weeks. Periosteal surfaces were activated in five out of eight animals. Mechanical parameters as well as periosteal activation (as measured by incorporated fluorescent labels) were quantified site-specifically in 12 30 degrees sectors subdividing a mid-diaphyseal section. The amount of periosteal mineralizing surface per sector correlated strongly (R2 = 0.63) with the induced peak circumferential strain gradients. Conversely, peak strain magnitude and peak strain rate were only weakly associated with the sites of periosteal activation. The unique feature of this study is that a specific mechanical stimulus (peak circumferential strain gradients) was successfully correlated with specific sites of periosteal bone activation induced in a noninvasive bone adaptation model. The knowledge of this mechanical parameter may help to design exercise regimens that are able to deposit bone at sites where increased structural strength is most needed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Bone Density / physiology*
  • Bone Development / physiology*
  • Chickens
  • Diaphyses / anatomy & histology
  • Diaphyses / physiology*
  • Image Processing, Computer-Assisted
  • Male
  • Metatarsal Bones / anatomy & histology
  • Metatarsal Bones / physiology*
  • Periosteum / anatomy & histology
  • Physical Conditioning, Animal*
  • Weight-Bearing