Bak can accelerate chemotherapy-induced cell death independently of its heterodimerization with Bcl-XL and Bcl-2

Oncogene. 1997 Oct 9;15(15):1871-5. doi: 10.1038/sj.onc.1201350.

Abstract

Bak has been shown to both promote apoptosis and to inhibit cell death while two other members of the Bcl-2 family of proteins, Bcl-XL and Bcl-2 delay apoptosis induced by various stimuli including chemotherapeutic agents. We generated clones with stable expression of Bak wild-type (wt) and Bak with its BH3 (delta78-86) domain deleted (deltaBH3) in FL5.12 cells or FL5.12 cells expressing either Bcl-XL or Bcl-2 to determine if Bak could accelerate apoptosis and antagonize the death repressor activity of Bcl-XL and Bcl-2 during chemotherapy-induced apoptosis. We found that Bak accelerated cell death in FL5.12 cells treated with etoposide, fluorouracil or taxol. In FL5.12 cells expressing Bcl-XL and Bak wt or Bak deltaBH3, both Bak wt or Bak deltaBH3 were able to antagonize the protective effect of Bcl-XL when treated with etoposide or fluorouracil. Bak wt or Bak deltaBH3 were also able to abrogate the protective effect of Bcl-2 in cells expressing Bcl-2 and Bak wt or Bak deltaBH3 when challenged by etoposide or fluorouracil. Immunoprecipitation studies revealed that deletion of BH3 disrupted heterodimerization between Bak and Bcl-XL and that both Bak wt and Bak deltaBH3 failed to interact with Bcl-2. These results demonstrate that Bak does not require its BH3 domain to promote apoptosis in stably transfected cells. Furthermore, Bak can accelerate chemotherapy-induced cell death independently of its heterodimerization with Bcl-XL and Bcl-2.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Apoptosis / physiology
  • Cell Line
  • Dimerization
  • Membrane Proteins / chemistry
  • Membrane Proteins / physiology*
  • Proto-Oncogene Proteins c-bcl-2 / chemistry*
  • bcl-2 Homologous Antagonist-Killer Protein

Substances

  • Antineoplastic Agents
  • Membrane Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-2 Homologous Antagonist-Killer Protein