The direct reaction of seven pyridinium oximes with the nerve agents sarin, soman, and tabun was followed by a spectrophotometric method. The half-lives (t1/2) of the oximes, the first- and second-order rate constants (k1, k2), and the maximal reaction velocity (vmax) were calculated according to changes in the absorbance of the zwitterion (betaine) peak. In all cases the reaction velocity of the nerve agents with any of the oximes was highest with tabun, followed by sarin and then soman. Comparing the reaction rates of three therapeutically used oximes with the same nerve agent, the highest rate was obtained for soman with obidoxime, for sarin with 2-PAM, and for tabun with HI 6. The maximal reaction velocities reveal that the detoxification of the nerve agents by direct reaction with oximes and the subsequent decomposition of the phosphonyl oxime in vivo do not substantially contribute to the therapeutic effect of these antidotes.