Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Nov;33(5):632-52.

Peripheral Control and Lateralization of Birdsong

  • PMID: 9369464

Peripheral Control and Lateralization of Birdsong

R A Suthers. J Neurobiol. .


Recent studies on several species of oscine songbirds show that they achieve their varied vocal performances through coordinated activity of respiratory, syringeal, and other vocal tract muscles in ways that take maximum advantage of the acoustic flexibility made possible by the presence of two independently controlled sound sources in their bipartite syrinx (vocal organ). During song, special motor programs to respiratory muscles alter the pattern of ventilation to maintain the supply of respiratory air and oxygen to permit songs of long duration, high syllable repetition rates, or maximum spectral complexity. Each side of the syrinx receives its own motor program that, together with that sent to respiratory muscles, determines the acoustic properties of the ipsilaterally produced sound. The acoustic expression of these bilaterally distinct, phonetic motor patterns depends on the action of dorsal syringeal adductor muscles that, by opening or closing the ipsilateral side of the syrinx to airflow, determine the amount each side contributes to song. The syringeally generated sound is further modified by muscles that control the shape of the vocal tract. Different species have adopted different motor strategies that use the left and right sides of the syrinx in patterns of unilateral, bilateral, alternating, or sequential phonation to achieve the differing temporal and spectral characteristics of their songs. As a result, the degree of song lateralization probably varies between species to form a continuum from unilateral dominance to bilateral equality.

Similar articles

See all similar articles

Cited by 26 articles

See all "Cited by" articles

Publication types

MeSH terms