Fatty acid uptake is preserved in chronically dysfunctional but viable myocardium

Am J Physiol. 1997 Nov;273(5):H2473-80. doi: 10.1152/ajpheart.1997.273.5.H2473.


Glucose uptake appears preserved or even enhanced in the chronically dysfunctional but viable myocardium. However, the use of other fuels such as free fatty acids (FFA) remains unknown. We studied FFA uptake in the chronically dysfunctional but viable myocardium in seven patients with an occluded major coronary artery and a corresponding chronic wall motion abnormality but no previous infarction. Myocardial FFA uptake kinetics in the fasting state were measured with positron emission tomography (PET) and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA). The FFA uptake index was calculated by multiplying the fractional [18F]FTHA uptake with serum FFA concentration. Myocardial blood flow (MBF) was measured with [15O]H2O and PET. Myocardial viability was confirmed with a static 18F-labeled 2-fluoro-2-deoxy-D-glucose PET imaging and a follow-up echocardiography in the revascularized patients. Regional MBF was slightly but not significantly lower in the dysfunctional compared with normal myocardial segments (0.76 +/- 0.18 vs. 0.81 +/- 0.14 ml.min-1.g-1, means +/- SD; P = 0.16). The fractional [18F]FTHA uptake rates [0.11 +/- 0.03 vs. 0.11 +/- 0.04 ml.g-1.min-1; not significant (NS)], and the FFA uptake indexes (5.8 +/- 1.7 vs. 5.8 +/- 2.1 mumol.100g-1.min-1; NS) were similar in the dysfunctional but viable and in the normal myocardial regions. Thus, in the chronically dysfunctional but viable (collateral-dependent) myocardium, the fatty acid uptake probed by [18F]FTHA appears preserved. Taken together with preserved glucose uptake, the results indicate that there is uncoupling of substrate uptake and mechanical function in the chronically dysfunctional but viable myocardium.

MeSH terms

  • Aged
  • Angioplasty, Balloon, Coronary
  • Biological Transport
  • Coronary Artery Bypass
  • Coronary Circulation
  • Coronary Disease / diagnostic imaging*
  • Coronary Disease / metabolism
  • Coronary Disease / physiopathology*
  • Fatty Acids / pharmacokinetics*
  • Fatty Acids, Nonesterified / metabolism*
  • Fluorine Radioisotopes / pharmacokinetics
  • Heart / diagnostic imaging*
  • Humans
  • Male
  • Middle Aged
  • Myocardium / metabolism*
  • Regional Blood Flow
  • Tomography, Emission-Computed


  • Fatty Acids
  • Fatty Acids, Nonesterified
  • Fluorine Radioisotopes
  • 14-fluoro-6-thiaheptadecanoic acid