Manuo-ocular coordination in target tracking. II. Comparing the model with human behavior

Biol Cybern. 1997 Oct;77(4):267-75. doi: 10.1007/s004220050387.


Several studies have shown that humans track a moving visual target with their eyes better if the movement of this target is directly controlled by the observer's hand. The improvement in performance has been attributed to coordination control between the arm motor system and the smooth pursuit (SP) system. In such a task, the SP system shows characteristics that differ from those observed during eye-alone tracking: latency (between the target-arm and the eye motion onsets) is shorter, maximum SP velocity is higher and the maximum target motion frequency at which the SP can function effectively is also higher. The aim of this article is to qualitatively evaluate the behavior of a dynamical model simulating the oculomotor system and the arm motor system when both are involved in tracking visual targets. The evaluation is essentially based on a comparison of the behavior of the model with the behavior of human subjects tracking visual targets under different conditions. The model has been introduced and quantitatively evaluated in a companion paper. The model is based on an exchange of internal information between the two sensorimotor systems, mediated by sensory signals (vision, arm muscle proprioception) and motor signals (arm motor command copy). The exchange is achieved by a specialized structure of the central nervous system, previously identified as a part of the cerebellum. Computer simulation of the model yielded results that fit the behavior of human subjects observed during previously reported experiments, both qualitatively and quantitatively. The parallelism between physiology and human behavior on the one hand, and structure and simulation of the model on the other hand, is discussed.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Behavior / physiology*
  • Eye Movements / physiology*
  • Humans
  • Models, Biological*
  • Psychomotor Performance / physiology*