Paternal effects in Drosophila: implications for mechanisms of early development

Curr Top Dev Biol. 1998;38:1-34. doi: 10.1016/s0070-2153(08)60243-4.


The study of paternal effects on development provides a means to identify sperm-supplied products required for fertilization and the initiation of embryogenesis. This review describes paternal effects on animal development and discusses their implications for the role of the sperm in egg activation, centrosome activity, and biparental inheritance in different animal species. Paternal effects observed in Caenorhabditis elegans and in mammals are briefly reviewed. Emphasis is placed on paternal effects in Drosophila melanogaster. Genetic and cytologic evidence for paternal imprinting on chromosome behavior and gene expression in Drosophila are summarized. These effects are compared to chromosome imprinting that leads to paternal chromosome loss in sciarid and coccid insects and mammalian gametic imprinting that results in differential expression of paternal and maternal loci. The phenotypes caused by several early-acting maternal effect mutations identify specific maternal factors that affect the behavior of paternal components during fertilization and the early embryonic mitotic divisions. In addition, maternal effect defects suggest that two types of regulatory mechanisms coordinate parental components and synchronize their progression through mitosis. Some activities are coordinated by independent responses of parental components to shared regulatory factors, while others require communication between paternal and maternal components. Analyses of the paternal effects mutations sneaky, K81, paternal loss, and Horka have identified paternal products that play a role in mediating the initial response of the sperm to the egg cytoplasm, participation of the male pronucleus in the first mitosis, and stable inheritance of the paternal chromosomes in the early embryo.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Caenorhabditis elegans / genetics
  • Chromosomes
  • Drosophila / embryology
  • Drosophila / genetics*
  • Embryonic Development*
  • Fathers
  • Gene Expression Regulation, Developmental / physiology*
  • Genes, Insect
  • Male
  • Mammals / genetics