Purpose: A preclinical evaluation of the safety of the AngioJet-F105 rheolytic thrombectomy catheter.
Materials and methods: The AngioJet-F105 catheter uses multiple retrograde high-speed fluid jets impinging on a primary aspiration lumen to create a hydrodynamic recirculation vortex that traps and fragments adjacent thrombus, with simultaneous evacuation of the resulting debris through the aspiration lumen. The effect of the AngioJet on treated vessels was evaluated in 10 canines. Vascular integrity on histopathologic examination and endothelial coverage on scanning electron microscopic study were examined in 15 vessel segments treated with the AngioJet-F105 catheter, compared with four vessel segments subjected to the Fogarty balloon maneuver, and 10 untreated vessel segments. The size distribution of particulate debris, upstream and downstream, after thrombectomy was determined in a flow-circuit model simulating the superficial femoral artery. Aliquots from the downstream effluent were then injected into the renal arteries of two healthy canines.
Results: The device caused only minimal focal endothelial denudation and no significant deep injury. No significant difference in endothelial coverage occurred in AngioJet-treated vessel segments compared to untreated control vessels (mean +/- standard deviation: 88.0% +/- 7.9% vs 89.7% +/- 11.6%, P = .77). Vessels treated with the Fogarty balloon pullback maneuver had significantly less residual endothelial coverage (58.0% +/- 8.0%, P < .03). Particulate microemboli in the effluent of the flow model accounted for 12% of the initial thrombus volume (0% > 100 microm, 99.83% < or = 10 microm). Histopathologic evaluation of the four renal beds injected with the resulting debris demonstrated no signs of necrosis. A moderate transient increase in plasma-free hemoglobin occurred, with a mild corresponding decrease in hematocrit.
Conclusions: The AngioJet-F105 catheter resulted in only mild and focal injury to the treated vessels. The vast majority of resulting particulate debris consist of microscopic particles, without significant ischemic effect.