Parametric imaging of ligand-receptor binding in PET using a simplified reference region model
- PMID: 9417971
- DOI: 10.1006/nimg.1997.0303
Parametric imaging of ligand-receptor binding in PET using a simplified reference region model
Abstract
A method is presented for the generation of parametric images of radioligand-receptor binding using PET. The method is based on a simplified reference region compartmental model, which requires no arterial blood sampling, and gives parametric images of both the binding potential of the radioligand and its local rate of delivery relative to the reference region. The technique presented for the estimation of parameters in the model employs a set of basis functions which enables the incorporation of parameter bounds. This basis function method (BFM) is compared with conventional nonlinear least squares estimation of parameters (NLM), using both simulated and real data. BFM is shown to be more stable than NLM at the voxel level and is computationally much faster. Application of the technique is illustrated for three radiotracers: [11C]raclopride (a marker of the D2 receptor), [11C]SCH 23390 (a marker of the D1 receptor) in human studies, and [11C]CFT (a marker of the dopamine transporter) in rats. The assumptions implicit in the model and its implementation using BFM are discussed.
Copyright 1997 Academic Press.
Similar articles
-
Simplified reference tissue model for PET receptor studies.Neuroimage. 1996 Dec;4(3 Pt 1):153-8. doi: 10.1006/nimg.1996.0066. Neuroimage. 1996. PMID: 9345505
-
Cognitive deficits in Huntington's disease are predicted by dopaminergic PET markers and brain volumes.Brain. 1997 Dec;120 ( Pt 12):2207-17. doi: 10.1093/brain/120.12.2207. Brain. 1997. PMID: 9448576
-
Quantification of dopamine transporter density in monkeys by dynamic PET imaging of multiple injections of 11C-CFT.Synapse. 1996 Nov;24(3):262-72. doi: 10.1002/(SICI)1098-2396(199611)24:3<262::AID-SYN9>3.0.CO;2-C. Synapse. 1996. PMID: 8923667
-
Distribution volume ratios without blood sampling from graphical analysis of PET data.J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40. doi: 10.1097/00004647-199609000-00008. J Cereb Blood Flow Metab. 1996. PMID: 8784228
-
[Pathophysiology of mood disorders and the therapy].Seishin Shinkeigaku Zasshi. 2002;104(6):464-71. Seishin Shinkeigaku Zasshi. 2002. PMID: 12373801 Review. Japanese. No abstract available.
Cited by
-
Quantitative Total-Body Imaging of Blood Flow with High Temporal Resolution Early Dynamic 18F-Fluorodeoxyglucose PET Kinetic Modeling.medRxiv [Preprint]. 2024 Aug 31:2024.08.30.24312867. doi: 10.1101/2024.08.30.24312867. medRxiv. 2024. PMID: 39252929 Free PMC article. Preprint.
-
Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.Hum Brain Mapp. 2014 May;35(5):1875-84. doi: 10.1002/hbm.22298. Epub 2013 May 14. Hum Brain Mapp. 2014. PMID: 23671038 Free PMC article.
-
Striatal dopamine transporter and receptor availability correlate with relative cerebral blood flow measured with [11C]PE2I, [18F]FE-PE2I and [11C]raclopride PET in healthy individuals.J Cereb Blood Flow Metab. 2023 Jul;43(7):1206-1215. doi: 10.1177/0271678X231160881. Epub 2023 Mar 13. J Cereb Blood Flow Metab. 2023. PMID: 36912083 Free PMC article.
-
In vivo validation of reconstruction-based resolution recovery for human brain studies.J Cereb Blood Flow Metab. 2010 Feb;30(2):381-9. doi: 10.1038/jcbfm.2009.225. Epub 2009 Oct 21. J Cereb Blood Flow Metab. 2010. PMID: 19844240 Free PMC article.
-
Test-retest repeatability of [18F]Flortaucipir PET in Alzheimer's disease and cognitively normal individuals.J Cereb Blood Flow Metab. 2020 Dec;40(12):2464-2474. doi: 10.1177/0271678X19879226. Epub 2019 Oct 1. J Cereb Blood Flow Metab. 2020. PMID: 31575335 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
