Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies

Brain Res Mol Brain Res. 1997 Nov;51(1-2):23-32. doi: 10.1016/s0169-328x(97)00206-4.


Mouse monoclonal antibodies were raised against bacterially expressed protein sequences of the NR2A, NR2B, NR2C and NR2D subunits of the rat NMDA receptor. From immunoblots of rat brain proteins, the apparent molecular weights of these subunits were 165, 170, 135 and 145 kDa, respectively. Proteins of similar masses were observed on immunoblots of specifically transfected HEK293 cells. Deglycosylation with endoglycosidase F reduced the mass of each endogenous NR2 subunit by approximately 10 kDa. In distribution studies, NR2A-immunoreactive protein (IRP) was located throughout the adult rat brain, NR2B-IRP was primarily in the forebrain, NR2C-IRP was predominantly in the cerebellum and NR2D-IRP was mainly found in the thalamus, midbrain and brainstem. Whereas NR2A- and NR2C-IRPs increased during rat brain post-natal development, NR2B- and NR2D-IRPs were abundant at birth and declined with age, especially in cerebellum. NR2-IRPs of mouse, rabbit, frog and human brain were of sizes similar to those of the corresponding rat subunits and were similarly distributed. In summary, NR2 subunits are large glycoproteins whose specific expression profiles in the brain are developmentally and regionally regulated and which are similarly expressed in a variety of species.

MeSH terms

  • Aging / metabolism*
  • Animals
  • Antibodies, Monoclonal
  • Brain / metabolism*
  • Cell Line
  • Gene Expression Regulation*
  • Gene Expression Regulation, Developmental
  • Humans
  • Mice
  • Organ Specificity
  • Rabbits
  • Ranidae
  • Rats
  • Receptors, N-Methyl-D-Aspartate / analysis
  • Receptors, N-Methyl-D-Aspartate / biosynthesis*
  • Recombinant Proteins / biosynthesis
  • Species Specificity
  • Transfection


  • Antibodies, Monoclonal
  • Receptors, N-Methyl-D-Aspartate
  • Recombinant Proteins