Rhodopsin: a prototypical G protein-coupled receptor

Prog Nucleic Acid Res Mol Biol. 1998:59:1-34. doi: 10.1016/s0079-6603(08)61027-2.


A variety of spectroscopic and biochemical studies of recombinant site-directed mutants of rhodopsin and related visual pigments have been reported over the past 9 years. These studies have elucidated key structural elements common to visual pigments. In addition, systematic analysis of the chromophore-binding pocket in rhodopsin and cone pigments has led to an improved understanding of the mechanism of the opsin shift, and of particular molecular determinants underlying color vision in humans. Identification of the conformational changes that occur on rhodopsin photoactivation has been of particular recent concern. Assignments of light-dependent molecular alterations to specific regions of the chromophore have also been attempted by studying native opsins regenerated with synthetic retinal analogs. Site-directed mutagenesis of rhodopsin has also provided useful information about the retinal-binding pocket and the molecular mechanism of rhodopsin photoactivation. Individual molecular groups have been identified to undergo structural alterations or environmental changes during photoactivation. Analysis of particular mutant pigments in which specific groups are locked into their respective "off" or "on" states has provided a framework to identify determinants of the active conformation, as well as the minimal number of intramolecular transitions required to switch between inactive and active conformations. A simple model for the active state of rhodopsin can be compared to structural models of its ground state to localize chromophore-protein interactions that may be important in the photoactivation mechanism. This review focuses on the recent functional characterization of site-directed mutants of bovine rhodopsin and some cone pigments. In addition, an attempt is made to reconcile previous key findings and existing structural models with information gained from the analysis of site-directed mutant pigments.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cattle
  • GTP-Binding Proteins / chemistry
  • Molecular Sequence Data
  • Protein Conformation
  • Receptors, Cell Surface / chemistry*
  • Rhodopsin / chemistry*


  • Receptors, Cell Surface
  • Rhodopsin
  • GTP-Binding Proteins