Functional morphology of insect mechanoreceptors

Microsc Res Tech. 1997 Dec 15;39(6):506-31. doi: 10.1002/(SICI)1097-0029(19971215)39:6<506::AID-JEMT5>3.0.CO;2-B.


This paper reviews the structure and function of insect mechanoreceptors with respect to their cellular, subcellular, and cuticular organization. Four types are described and their function is discussed: 1, the bristles; 2, the trichobothria; 3, the campaniform sensilla; and 4, the scolopidia. Usually, bristles respond to touch, trichobothria to air currents and sound, campaniform sensilla to deformation of the cuticle, and scolopidia to stretch. Mechanoreceptors are composed of four cells: a bipolar sensory neuron, which is enveloped by the thecogen, the trichogen, and the tormogen cells. Apically, the neuron gives off a ciliary dendrite which is attached to the stimulus-transmitting cuticular structures. In types 1-3, the tip of the dendrite contains a highly organized cytoskeletal complex of microtubules, the "tubular body," which is connected to the dendritic membrane via short rods, the "membrane-integrated cones" (MICs). The dendritic membrane is attached to the cuticle via fine attachment fibers. The hair-type sensilla (types 1, 2) are constructed as first-order levers, which transmit deflection of the hair directly to the dendrite tip. In campaniform sensilla (type 3), there is a cuticular dome instead of a hair and the dendrite is stimulated by deformation of the cuticle. In these three types, a slight lateral compression of the dendrite tip is most probably the effective stimulus. In scolopidia, the dendritic membrane is most probably stimulated by stretch. On the subcellular level, connectors between the cytoskeleton, the dendritic membrane, and extracellular (cuticular) structures are present in all four types and are thought to be engaged in membrane depolarization.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Insecta / cytology*
  • Insecta / physiology*
  • Mechanoreceptors / cytology*
  • Mechanoreceptors / physiology*
  • Mechanoreceptors / ultrastructure
  • Neurons / physiology*