This article reviews diastolic and systolic ventricular interaction, and clinical pathophysiological conditions involving ventricular interaction. Diastolic ventricular interdependence is present on a moment-to-moment, beat-to-beat basis, and the interactions are large enough to be of physiological and pathophysiological importance. Although always present, ventricular interdependence is most apparent with sudden postural and respiratory changes in ventricular volume. Left ventricular function significantly affects right ventricular systolic function. Experimental studies have shown that about 20% to 40% of the right ventricular systolic pressure and volume outflow result from left ventricular contraction. This dependency of the right ventricle on the left ventricle helps to explain the right ventricular response to volume overload, pressure overload, and myocardial ischemia. The septum and its position are not the sole mechanism for ventricular interdependence. Ventricular interdependence causes overall ventricular deformation, and is probably best explained by the balance of forces at the interventricular sulcus, the material properties, and cardiac dimensions.