Interleukin-10 functions in vitro and in vivo to inhibit bacterial DNA-induced secretion of interleukin-12

J Interferon Cytokine Res. 1997 Dec;17(12):781-8. doi: 10.1089/jir.1997.17.781.

Abstract

Bacterial DNA (bDNA) has a number of biologic properties, including the ability to induce interleukin-12 (IL-12) production by macrophages. We studied the role of the regulatory cytokine IL-10 as a potential inhibitor of bDNA-induced IL-12 production. IL-10 concentrations as low as 0.3 ng/ml profoundly inhibited bDNA-induced macrophage IL-12 production as measured by Elispot analysis of IL-12 p40-secreting cells. Additionally, we found that IL-10 inhibited bDNA-induced IL-12 secretion by the macrophage cell lines J774 and RAW 264. Preincubation of splenic adherent cells with IL-10 markedly reduced bDNA-induced transcription of IL-12 p40 mRNA. Interestingly, after 2 h of exposure, bDNA also induces transcription of IL-10 mRNA by splenic adherent cells. The importance of IL-10 in the in vivo regulation of bDNA-induced cytokine secretion was illustrated by the response of mice with disrupted IL-10 genes (IL-10 ko mice) to i.v. bDNA challenge. Compared to +/+ mice, IL-10 knockout (ko) mice exhibited increased numbers of IL-12 and interferon-gamma (IFN-gamma)-secreting cells following either single or repeated challenge with bDNA. These findings indicate that IL-10 plays a key role in regulating bDNA-induced production of inflammatory cytokines.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • DNA, Bacterial / genetics*
  • Interferon-gamma / metabolism
  • Interleukin-10 / physiology*
  • Interleukin-12 / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Secretory Rate / drug effects

Substances

  • DNA, Bacterial
  • Interleukin-10
  • Interleukin-12
  • Interferon-gamma