Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein

Infect Immun. 1998 Feb;66(2):486-91. doi: 10.1128/IAI.66.2.486-491.1998.

Abstract

Human lactoferrin (hLf), a glycoprotein released from neutrophil granules during inflammation, and the lipopolysaccharide (LPS)-binding protein (LBP), an acute-phase serum protein, are known to bind to the lipid A of LPS. The LPS-binding sites are located in the N-terminal regions of both proteins, at amino acid residues 28 to 34 of hLf and 91 to 108 of LBP. Both of these proteins modulate endotoxin activities, but they possess biologically antagonistic properties. In this study, we have investigated the competition between hLf and recombinant human LBP (rhLBP) for the binding of Escherichia coli 055:B5 LPS to the differentiated monocytic THP-1 cell line. Our studies revealed that hLf prevented the rhLBP-mediated binding of LPS to the CD14 receptor on cells. Maximal inhibition of LPS-cell interactions by hLf was raised when both hLf and rhLBP were simultaneously added to LPS or when hLf and LPS were mixed with cells 30 min prior to the incubation with rhLBP. However, when hLf was added 30 min after the interaction of rhLBP with LPS, the binding of the rhLPS-LBP complex to CD14 could not be reversed. These observations indicate that hLf competes with rhLBP for the LPS binding and therefore interferes with the interaction of LPS with CD14. Furthermore, experiments involving competitive binding of the rhLBP-LPS complex to cells with two recombinant mutated hLfs show that in addition to residues 28 to 34, another basic cluster which contains residues 1 to 5 of hLf competes for the binding to LPS. Basic sequences homologous to residues 28 to 34 of hLf were evidenced on LPS-binding proteins such as LBP, bactericidal/permeability-increasing protein, and Limulus anti-LPS factor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute-Phase Proteins*
  • Binding, Competitive
  • Carrier Proteins / metabolism*
  • Cell Line
  • Humans
  • Lactoferrin / pharmacology*
  • Lipopolysaccharide Receptors / metabolism*
  • Lipopolysaccharides / metabolism*
  • Membrane Glycoproteins*
  • Monocytes / metabolism

Substances

  • Acute-Phase Proteins
  • Carrier Proteins
  • Lipopolysaccharide Receptors
  • Lipopolysaccharides
  • Membrane Glycoproteins
  • lipopolysaccharide-binding protein
  • Lactoferrin