The vesamicol analogue, meta-[(125)I]iodobenzyltrozamicol [(+)-[(125)I]MIBT] was evaluated as a probe for the in vitro labeling of the vesicular acetylcholine transporter in primate brain. In the striatum, (+)-[(125)I]MIBT bound a single high-affinity site with a Kd value of 4.4 +/- 0.7 nM. Competition for (+)-[(125)I]MIBT binding to the striatum by a group of vesamicol analogues displayed a pharmacological profile similar to the rank order of potency previously observed for the vesicular acetylcholine transporter on Torpedo synaptic vesicles. High-affinity binding of (+)-[(125)I]MIBT in the occipital cortex was characterized by a Kd value of 4.6 +/- 1.1 nM. However, the rank order of potency for inhibition of (+)-[(125)I]MIBT binding to the occipital cortex by the same test compounds differed from that observed in the striatum. The results suggest that (+)-[(125)I]MIBT is a reliable probe of the vesicular acetylcholine transporter in primate striatum, but its binding in primate occipital cortex is more complex.