Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec;49(12):1211-6.
doi: 10.1111/j.2042-7158.1997.tb06072.x.

Molecular factors influencing drug transfer across the blood-brain barrier

Affiliations

Molecular factors influencing drug transfer across the blood-brain barrier

J A Gratton et al. J Pharm Pharmacol. 1997 Dec.

Abstract

A recently reported approach to the prediction of blood-brain drug distribution uses the general linear free energy equation to correlate equilibrium blood-brain solute distributions (logBB) with five solute descriptors: R2 an excess molar refraction term; pi2H, solute dipolarity or polarizability; alpha2H and beta2H, the hydrogen bond acidity or basicity, and Vx, the solute McGowan volume. In this study we examine whether the model can be used to analyse kinetic transfer rates across the blood-brain barrier in the rat. The permeability (logPS) of the blood-brain barrier to a chemically diverse series of compounds was measured using a short duration vascular perfusion method. LogPS data were correlated with calculated solute descriptors, and octanol-water partition coefficients (logP(oct)) for comparison. It is shown that a general linear free energy equation can be constructed to predict and interpret logPS values. The utility of this model over other physicochemical descriptors for interpreting logPS and logBB values is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources