Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla

Brain Res. 1998 Jan 1;779(1-2):104-18. doi: 10.1016/s0006-8993(97)01104-9.


The amygdala, periaqueductal gray (PAG), and rostral ventromedial medulla (RVM) are critical for the expression of some forms of stress-related changes in pain sensitivity. In barbiturate anesthetized rats, microinjection of agonists for the mu opioid receptor into the amygdala results in inhibition of the tail flick (TF) reflex evoked by radiant heat. We tested the idea that TF inhibition following opioid stimulation of the amygdala is expressed through a serial circuit which includes the PAG and RVM. Rats were anesthetized and prepared for microinjection of DAMGO (0.5 microg/0.25 microl) into the basolateral amygdala (BLA) and lidocaine HCl (2.5%/0.4-0.5 microl) into either the ventrolateral PAG or RVM. Lidocaine did not significantly alter baseline values for TF latency or TF amplitude. When injected into the PAG prior to DAMGO application in the BLA, lidocaine significantly attenuated DAMGO-induced antinociception for the entire 40 min testing session. Similar treatment in the RVM also resulted in an attenuation of antinociception although rats showed significant recovery of TF inhibition by 40 min after lidocaine injection. Since acute injection of lidocaine into the RVM also affected baseline heart rate, separate animals were prepared with small electrolytic lesions placed in the RVM. Chronic RVM lesions also blocked TF inhibition produced by amygdala stimulation but did not affect heart rate. These results, when taken together with similar findings in awake behaving animals, suggest that a neural circuit which includes the amygdala, PAG, and RVM is responsible for the expression of several forms of hypoalgesia in the rat.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amygdala / drug effects*
  • Analgesics, Opioid / pharmacology*
  • Anesthetics, Local
  • Animals
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
  • Enkephalins / pharmacology*
  • Lidocaine
  • Male
  • Medulla Oblongata / drug effects*
  • Microinjections
  • Pain / drug therapy*
  • Pain Measurement
  • Periaqueductal Gray / drug effects*
  • Rats
  • Receptors, Opioid, mu / agonists
  • Reflex / drug effects
  • Stimulation, Chemical


  • Analgesics, Opioid
  • Anesthetics, Local
  • Enkephalins
  • Receptors, Opioid, mu
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
  • Lidocaine