A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function

Am J Respir Crit Care Med. 1998 Feb;157(2):484-90. doi: 10.1164/ajrccm.157.2.9706088.


Sodium 4-phenylbutyrate (Buphenyl, 4PBA) is a new FDA approved drug for management of urea cycle disorders. We have previously presented data suggesting that 4PBA, at clinically achievable concentrations, induces CFTR channel function on the plasma membrane of deltaF508-expressing cystic fibrosis (CF) airway epithelial cells in vitro (Rubenstein, R. C., and P. L. Zeitlin, 1997. J. Clin. Invest. 100:2457-2463). We hypothesized that 4PBA would induce epithelial CFTR function in vivo in individuals homozygous for deltaF508-CFTR. A randomized, double-blind, placebo-controlled trial in 18 deltaF508-homozygous patients with CF was performed with the maximum approved adult dose of 4PBA, 19 grams p.o. divided t.i.d., given for 1 wk. Nasal potential difference (NPD) response patterns and sweat chloride concentrations were determined before and after study drug treatment, and 4PBA and metabolites were assayed in plasma and urine at the end of study drug treatment. Subjects in the 4PBA group demonstrated small, but statistically significant improvements of the NPD response to perfusion of an isoproterenol/amiloride/chloride-free solution; this measure reflects epithelial CFTR function and is highly discriminatory between patients with and without CF. Subjects who had received 4PBA did not demonstrate significantly reduced sweat chloride concentrations or alterations in the amiloride-sensitive NPD. Side effects due to drug therapy were minimal and comparable in the two groups. These data are consistent with 4PBA therapy inducing CFTR function in the nasal epithelia of deltaF508-homozygous CF patients.

Publication types

  • Clinical Trial
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Administration, Oral
  • Adolescent
  • Adult
  • Chlorides / analysis
  • Cystic Fibrosis / drug therapy*
  • Cystic Fibrosis / genetics*
  • Cystic Fibrosis / physiopathology
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics*
  • Electrophysiology
  • Female
  • Homozygote*
  • Humans
  • Male
  • Mutation*
  • Nasal Cavity / physiopathology
  • Phenylbutyrates / adverse effects
  • Phenylbutyrates / pharmacokinetics
  • Phenylbutyrates / therapeutic use*
  • Pilot Projects
  • Sweat / chemistry


  • CFTR protein, human
  • Chlorides
  • Phenylbutyrates
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • 4-phenylbutyric acid