Sensitization of pain pathways in the spinal cord: cellular mechanisms

Prog Neurobiol. 1998 Feb;54(3):349-65. doi: 10.1016/s0301-0082(97)00067-1.


Sensitization is manifested as an increased response of neurones to a variety of inputs following intense or noxious stimuli. It is one of the simplest forms of learning and synaptic plasticity and it represents an important feature of nociception. In the spinal cord, repeated stimulation (at constant strength) of dorsal root afferents including nociceptive C fibres can elicit a progressive increase in the number of action potentials generated by motoneurones and interneurones. This phenomenon is termed "action potential windup" and is used as a cellular model of pain sensitization developing at the level of the central nervous system. Understanding the mechanisms responsible for windup generation might allow clarification of the cellular mechanisms of pain signalling and development of new strategies for pain treatment. Action potential windup is observed in a minority of cells only, indicating that certain cell-specific mechanisms are responsible for its generation. The most reliable index to predict windup generation is the rate at which the membrane potential is depolarized during repetitive stimulation. This phenomenon has been proposed to be due to gradual recruitment of NMDA receptor activity, to summation of slow excitatory potentials mediated by substance P (and related peptides) or to facilitation of slow calcium channels by metabotropic glutamate receptors. Little is known about the role of synaptic inhibition in windup, although it should not be underestimated. Each theory per se is unable to account for all the experimental observations. Since NMDA receptors are involved in many forms of synaptic plasticity, additional mechanisms such as summation of slow peptidergic potentials, facilitation of slow Ca2+ currents and disinhibition are proposed as necessary to impart specificity to pain-induced sensitization. These additional mechanisms might be species specific and change during development or chronic pain states.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain Chemistry / physiology
  • Neurons, Afferent / physiology*
  • Pain Threshold / physiology*
  • Spinal Cord / cytology*
  • Spinal Cord / physiology*