Background: Both fibroblast-mediated cytokine gene therapy and bone marrow transplantation (BMT) have proven to be efficient protocols for the recovery of bone marrow depression. In this report, the effects of fibroblast-mediated interleukin (IL)-6 gene therapy, in combination with BMT, on the recovery of irradiation-induced bone marrow depression were investigated.
Methods: NIH3T3 fibroblast cells engineered to secrete IL-6 (NIH3T3-IL-6) or NIH3T3 cells transduced with the neomycin gene (NIH3T3-Neo), in combination with 10(7), 10(6), or 10(5) syngeneic bone marrow cells, were implanted into irradiated mice.
Results: The platelets and white blood cells in the peripheral blood of the irradiated mice increased greatly 12 days after implantation of NIH3T3-IL-6 cells and BMT, the white blood cell counts were restored to a normal level 32 days after the combined therapy, and the platelet number was obviously higher than that in mice implanted with NIH3T3-Neo and BMT. Twenty and 25 days after the combined therapy, the mice showed accelerated recovery of colony-forming unit (CFU)-granulocyte/macrophages and CFU-megakaryocytes when compared with the mice implanted with NIH3T3-Neo cells and BMT. Ten days after lethal irradiation with gamma rays, the spleens formed more CFU-spleen in mice implanted with NIH3T3-IL-6 cells and BMT than in mice injected with phosphate-buffered saline or NIH3T3-Neo cells. Combined therapy with NIH3T3-IL-6 cell implantation and BMT delayed the survival period of the hematopoietic-depressed mice significantly when compared with therapy with NIH3T3-Neo cell implantation and BMT.
Conclusions: These data demonstrated that the combined therapy of fibroblast-mediated IL-6 gene therapy and BMT could significantly promote the recovery of irradiation-induced hematopoietic depression.